Weather Triggered Wireless Telemetry **Lightning Talk Project Planning**

Group: sdmay25-18 Nisha Raj, Alex Chambers, Colin Kempf, Aidan Gull, Adam Fields, Alex Christie

Project Overview

- ARA is an advanced wireless research platform covering lowa State University, Ames, and nearby rural areas.
 - Tasked with creating a system that will recognize and predict when a weather event is occurring.
 - This trigger, signals data collection before a given weather event has begun and allows us to continue collecting data until the weather event has passed.
 - This weather data will eventually allow researchers to determine how the performance from the ARA framework differs during different weather events.

Agronomy Farm

Wilson Hall

Problem Statement

- Want to intelligently collect a wide range of network data during a variety of weather events.
- Use forecast data to predict future weather events to gather data only when weather events we want to record are going to occur.
- Store collected data and allow for user queries to access and format selected data.

Project Management Style

- Agile Methodology
 - Team meets with advisors and clients weekly
 - During meeting team presents what was accomplished the previous week
 - The advisors discuss what expectations and next deliverables for the upcoming week
 - The team works on deliverables for the following week each week
 - Each sprint is one week long

5

Task Decomposition

2

Gantt Chart

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 16
Query ARA Weather Data API																
Process ARA Weather Data																
Weather Forecast APIs																
Check for Weather Event																
Lead-In Data Collection								I								
Data Collection																
Weather Forecast APIs																
Check Weather for Event																
Lead-Out Data collection																
Send Data to Data processing																
Wait for next prediction																
Wait until lead time prediction																
Data inputted																
Data reformatted																
Data stored on ARA Platform																
Validation																

Key Milestones

- Collect weather data using weather APIs
 - Initial prototype completed 10/14
- Use the collected weather data to create graphs that show the difference in prediction and actual weather at that time
 - Prototype with visuals by the end of October
- Software triggering collection of data and storing in specified format including graphs visuals
 - Initial prototype by the end of 1st semester
- Final software including querying UI and analysis of weather data
 - Product demo in April

Key Metrics

- Collect data 80% of the time during what we consider a weather event
 - Implemented in initial prototype
- 90% of the time the actual weather at a given time will be accurate in comparison to the predicted weather data 1 hour out
 - Implemented in prototype at the end of 1st semester
- Collect data 30 minutes before the weather event with 30% variance in collection start time
 - Implemented in prototype at the end of 1st semester

Key Criterias

- Functionality:
 - Ensure the software has all the dedicated functionality from our requirements
 - Weather event correctly predicted and triggers data collection
 - Data collected and stored in file hierarchy
- Client satisfaction:
 - The software needs to meet the users needs
- User Experience:
 - Users need to have a usable UI in order to query weather data

Key Risks and Risk Mitigation

- Risk 1: Increase Storage Space & Costs
 - Mitigation: Decrease excess lead-in time, gathering unnecessary data, by having accurate predictions
- Risk 2: Inaccurate Data Collection
 - Mitigation: By using local devices to measure weather data and incorporating methods for false positives and negatives
- Risk 3: Creating Hardware Malfunctions
 - Mitigation: Ensure our program is thoroughly tested before merging it with the ARA servers and currently existing applications on their hardware

Conclusion

We have identified:

- Project Management Methodology
- Task Decomposition and Breakdown
- Key Milestones
- Key Metrics
- Key Criterias
- Risks and Mitigations

5